
SOFTWARE IMPLEMENTATION OF 802.11a BLOCKS ON
SANDBLASTER DSP

Vaidyanathan Ramadurai, Sanjay Jinturkar, Sitij Agarwal, Mayan Moudgill, John
Glossner

Sandbridge Technologies, 1 North Lexington Avenue, White Plains, NY 10601
vramadurai@sandbridgetech.com

ABSTRACT

In this paper, we describe the design and
implementation of software blocks for 802.11a receiver on
Sandblaster DSP. A software solution provides high
reusability, low cost and short development time when
compared to dedicated hardware solutions. A significant
challenge faced is in achieving high throughput and
stringent latency requirements.

802.11a is an IEEE standard that operates in the
5GHz band using Orthogonal Frequency Division
Multiplexing (OFDM). OFDM divides a data signal across
48 separate sub-carriers to provide higher data rates and
minimize the multi-path propagation effects. The standard
supports multiple data rates from 6Mbps to 54Mbps and
involves high computational complexity.

The steady state 802.11a receiver consists of an FFT
and removing pilot/DC, demapper, deinterleaver,
depuncture, FEC decoder and CRC. We explore
techniques for optimizing individual blocks and also
combining multiple blocks to increase the overall
performance and to meet real time throughput and latency
requirements. There is significant data movement between
individual blocks like FFT, demapper, deinterleaver and
depuncture and we explain how multiple blocks could be
coupled to significantly reduce the instruction cycle count
as well as data transfers.

Traditional software deinterleavers have been
implemented using table look-ups. We explain how table-
look ups could be merged with other compute intensive
and data intensive blocks like demapper and depuncturer
thereby speeding up the entire system. Instead of
optimizing blocks for a specific data rate, we propose
optimizations that could be exploited for any data rate
specified by the 802.11a standard.

1. INTRODUCTION

The OFDM system provides a wireless LAN with data
payload communication capabilities of 6, 9, 12, 18, 24, 36,

48, and 54 Mbit/s. The support of transmitting and
receiving at data rates of 6, 12, and 24 Mbit/s is
mandatory. The system uses 52 subcarriers that are
modulated using binary or quadrature phase shift keying
(BPSK/QPSK), 16-quadrature amplitude modulation
(QAM), or 64-QAM. Forward error correction coding
(convolutional coding) is used with a coding rate of 1/2,
2/3, or 3/4.

To handle the high data rate requirements, several
hardware based solutions like ASICS and FPGAs exist for
802.11a/g. However, such solutions lack the flexibility and
reusability of software based solutions. Also, software
based methods reduce time to market by quick
modifications.

In this paper, we consider a software implementation
of 802.11a blocks on SandBlaster DSP. Since 802.11a
demands very high throughput and real time latency
requirements, a software implementation of the baseband
functions becomes very challenging. Section 2 gives a
brief overview of SandBlaster DSP architecture. Section 3
provides an introduction to the 802.11a receiver. In
section 4, we show the software implementation and
optimization of demapper. In Sections 5 and 6 we will
discuss the optimizations of deinterleaver and depuncturer
respectively. Finally, conclusions are drawn in section 7.

2. SANDBLASTER DSP

Sandbridge Technologies has developed the
Sandblaster architecture for a convergence device [1,2].
The Sandblaster architecture supports the data types
necessary for convergence devices including RISC control
code, DSP, and Java.

As shown in Figure 1, the design includes a unique
combination of modern techniques such as a SIMD
Vector/DSP unit, a parallel reduction unit, and a RISC-
based integer unit. Each processor core provides support
for concurrent execution for up to eight threads of
execution. All states may be saved from each individual
thread and no special software support is required for
interrupt processing. The machine is partitioned into a

RISC-based control unit that fetches instructions from a
set-associative instruction cache. Instruction space is
conserved through the use of compounded instructions that
are grouped into packets for execution.

The memory subsystem has been designed carefully to
minimize power dissipation. The pipeline design in
combination with the memory design ensures that all
memories are single ported and yet the processor can
sustain nearly 4 taps per cycle for a filter (the theoretical
maximum) in every thread unit simultaneously. A RISC-
based execution unit, depicted in the center of Figure 1,
assists with control processing.

Fig 1: Sandblaster DSP

For the control code, a 16 entry, 32-bit register file per
thread unit provides for very efficient control processing.
Common integer data types are typically stored in the
register file. This allows for branch bounds to be
computed and addresses to be efficiently generated.
Intensive loop processing is performed in the
SIMD/Vector unit depicted on the right side of Figure 1.
Each cycle, a 4x16-bit vector may be loaded into the
register file while two vectors are being multiplied,
saturated, reduced (e.g. summed), and saturated again. The
branch bound may also be computed and the instruction
looped on itself until the entire vector is processed. This
may be specified in as little as 64-bits.

To enable signal processing in software, the processor
supports many levels of parallelism. Thread-level
parallelism is supported by providing hardware support for
up to 8 independent programs to be simultaneously active
on a single Sandblaster core. This minimizes the latency in
physical layer processing. Since many algorithms have
stringent requirements on response time, multithreading is
an integral technique in reducing latencies. The data-level
parallelism (SIMD) is supported through the use of a
Vector unit.

3. 802.11a RECEIVER

The OFDM modulation scheme used in 802.11a
distributes the data over 52 subcarriers on a 20MHz
channel to mitigate the effects of multipath. Among the 52
subcarriers, 48 are for data and 4 are for pilot signals used
for tracking. Each subcarrier is 312.5kHz wide, giving raw
data rates from 125kbits/s to 1.125Mbits/s per subcarrier
depending on the modulation type – binary phase shift
keying (BPSK), quaternary PSK (QPSK), 16-quadrature
amplitude modulation (QAM), or 64-QAM – and the
error-correcting code rate (1/2, 2/3, or 3/4). The composite
signal therefore has a data rate ranging from 6Mbits/s to
54Mbits/s in the 20MHz channel [11]. Table 1 lists the
mode-dependent parameters for the 802.11a standard.

IEEE 802.11a Table 78—Rate-dependent parameters

Data rate
(Mbits/s)

Modulation
Coding
rate
 (R)

Coded bits
per
subcarrier
(NBPSC)

Coded bits
per
OFDM
symbol
(NCBPS)

Data bits
per
OFDM
symbol
(NDBPS)

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 16-QAM 1/2 4 192 96

36 16-QAM 3/4 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM 3/4 6 288 216

Table1

The baseband physical layer block diagram of an
802.11a receiver is shown in Fig 2.

Fig 2. 802.11a receiver physical layer

The digital data is frequency corrected and after removing
the guard intervals given to an. FFT block. The FFT

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

Inter-Chip Connection E
xt

e
rn

a
l M

e
m

o
ry

T
h

re
a

d
 C

a
ch

e

Instruction Decode

Branch PCPCCRCR

LRLR

CTRCTR

Integer IQ

Register
File

OffsetOffset

External MemoryExternal MemoryExternal MemoryData Memory
External MemoryExternal MemoryExternal MemoryData Memory

Data Buffer

MPY

VRABC

Vector
File

MPY

VRABC

Vector
File

PABC

MPY

Vector
File

MPY

Vector
File

Vector IQ

OffsetOffset

SAT

VRABC VRABC

PABCPABCPABC

ACC ACC ACC ACC

RA RB

ADD

RA RB

ADD
ADD ADD ADD ADD

ADD

Remove
GI

FFT Channel
Eq

De
mapper

De
interleave

De
puncture

Conv
Decoder

De
scramble

converts the time domain samples to frequency domain
sub-carriers. 802.11a uses a total of 52 sub-carriers out of
which 48 are data symbols are 4 are pilots. A channel
equalizer is then employed to avoid inter symbol
interference (ISI) and inter carrier interference (ICI). The
demapper takes the 48 complex symbols and depending on
the type of modulation demodulates the subcarriers into
data bits (hard/soft bits). The demodulated bits are
deinterleaved, depunctured, decoded using a convolutional
decoder and descrambled. In this paper, we will consider
the following blocks implemented on SandBlaster DSP:

1. Demapper
2. Deinterleaver
3. Depuncuturer

4. DEMAPPER

We employ the soft demapper with the channel state
information (CSI) for 16QAM and 64QAM demodulation
as described in [6]. It has been shown that the simplified
soft output demapper greatly outperforms the hard
decision demapper [6].

The matlab code for the 64QAM is shown in Fig. 3.
chI, chQ are the CSI and rxI, rxQ are the inputs to the
demapper. Every sub-carrier produces 6 soft output bits
after demodulation.

The equivalent C code implemented in SandBlaster
DSP is shown in Fig.4 The loop is written in such a way
that it gets vectorized, i.e. for e.g. bit0 for 4 sub-carriers
can be computed at the same time. 4 input elements and 4
CSI elements can be loaded, multiplied and added to get
bit0 from each of the 4 sub-carriers. This is done similarly
for calculating the other bits from all the sub-carriers.

5. DEINTERLEAVER

In 802.11a, all encoded data bits shall be interleaved
by a block interleaver with a block size corresponding to
the number of bits in a single OFDM symbol. The
interleaver is defined by a two-step permutation. The first
permutation ensures that adjacent coded bits are mapped
onto nonadjacent subcarriers. The second ensures that
adjacent coded bits are mapped alternately onto less and
more significant bits of the constellation and, thereby, long
runs of low reliability (LSB) bits are avoided.
The first permutation is defined by the rule:

i = s floor(j/s) + (j + floor(16 j/NCBPS)) mod s
{j = 0,1,… NCBPS – 1}
The value of s is determined by the number of coded
bits per subcarrier, NBPSC, according to
s = max(NBPSC/2,1)

Fig 3. Matlab code for 64QAM demapper

Fig 4. C code for 64QAM demapper

The second permutation is defined by the rule:

k = 16 i – (NCBPS – 1)floor(16 i/NCBPS), where
{i = 0,1,… NCBPS – 1}

NCBPS is the number of coded bits per symbol and
NBPSC is the number of coded bits per sub-carrier.

Let us consider the deinterleaver for data modulated
by 16QAM. Here the number of soft bits from the
demapper is 192. We will observe the deinterleaver
permutation by combining permutations 1 and 2
mentioned above. We will name the indices from 0 to 191.
Given below is the input for the first 60 elements and final
deinterleaved output of those 60 elements. Note that
permutation 2 also implicitly produces a (12x16) transpose
of the final output. If we ignore the transpose and look at

for k = 1:48

 %% Determine the 3 inphase bits
 chMagSq(k) = chI(k).^2 + chQ(k).^2;
 % mag sq of each entry of the vector

 bit0 = rxI(k)*chI(k) + rxQ(k)*chQ(k);
 bit1 = 4 * chMagSq(k) - abs(bit0);
 bit2 = 2 * chMagSq(k) - abs(bit1);

 %% Repeat computations to get the 3
 quadrature bits

 bit3 = -rxI(k)*chQ(k) + rxQ(k)*chI(k);
 bit4 = 4 * chMagSq(k) - abs(bit3);
 bit5 = 2 * chMagSq(k) - abs(bit4);

for(k=0; k<48; k++){
 softBits_t[48*0+k] = (rxI[k]*chR[k] +
 rxQ[k]*chI[k]) >> QAM64_SF;
 softBits_t[48*1+k] = 4*chMagSq[k] –
 SB_ABS(softBits_t[48*0+k]);
 softBits_t[48*2+k] = 2*chMagSq[k] –
 SB_ABS(softBits_t[48*1+k]);
 softBits_t[48*3+k] = (rxQ[k]*chR[k] –
 rxI[k]*chI[k]) >> QAM64_SF;
 softBits_t[48*4+k] = 4*chMagSq[k] –
 SB_ABS(softBits_t[48*3+k]);
 softBits_t[48*5+k] = 2*chMagSq[k] –
 SB_ABS(softBits_t[48*4+k]);
}

the pattern of the data shuffling, row 0, row 2 and row 4
are unchanged, in rows 1 and 3 the elements are shuffled
as {x1,x0,x3,x2} taken 4 elements {x0,x1,x2,x3} at a
time.

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

0 1 2 3 4 5 6 7 8 9 10 11

13 12 15 14 17 16 19 18 21 20 23 22

24 25 26 27 28 29 30 31 32 33 34 35

37 36 39 38 41 40 43 42 45 44 47 46

48 49 50 51 52 53 54 55 56 57 58 59

Hence we can deinterleave 4 elements at a time, either
using just a vector copy or a vector shuffle and a vector
copy. Fig 5 shows the code snippet for the 16QAM case.
The code shows only the shuffling for 4 elements for 4
rows. This will be executed 4x3 times for all rows and all
columns. By inlining and software pipelining, the 16QAM
deinterleaving is done in ~200 cycles. A table lookup or
even direct copy would have taken atleast 384 cycles.
Also, by doing in-place deinterleaving, we could perform
the data shuffling only for the odd rows. This would
improve the cycle count further by 50%. A similar
approach has been used for all other modulation schemes
like BPSK, QPSK and QAM64 which produces different
number of softbits.

6. DEPUNCTURER

Puncturing is a procedure for omitting some of the
encoded bits in the transmitter (thus reducing the number
of transmitted bits and increasing the coding rate) and
inserting a dummy “zero” metric into the convolutional
decoder on the receive side in place of the omitted bits. In
802.11a, there are two puncturing modes, rates r = 2/3 and
r = ¾.

In r = ¾, there are two zero bits inserted for every 4
bits as shown in Fig 6. The C code for QAM16, ¾
depuncture is also shown. The input to the depuncture is
192 soft bits from the QAM16 demapper. The ¾
depuncture produces 288 bits output after inserting zeros.
In here again, the copy {B2,A3,B3,A4}, {B5,A6,B6,A7},
etc vectorizes.

Fig 5. C code for 16QAM deinterleaving

A0 A1 A2 A3 A4 A5 A6 A7 A8

B0 B1 B2 B3 B4 B5 B6 B7 B8

Fig 6. r=3/4 depuncture

void
qam16_deinterleave(
 short * restrict X,
 short * restrict Y,
 int instride,
 int outstride
)
{
 int i;
 int j;
 short A[16];

 A[4*0+0] = X[instride*0+0];
 A[4*0+1] = X[instride*0+1];
 A[4*0+2] = X[instride*0+2];
 A[4*0+3] = X[instride*0+3];

 A[4*1+0] = X[instride*1+1];
 A[4*1+1] = X[instride*1+0];
 A[4*1+2] = X[instride*1+3];
 A[4*1+3] = X[instride*1+2];

 A[4*2+0] = X[instride*2+0];
 A[4*2+1] = X[instride*2+1];
 A[4*2+2] = X[instride*2+2];
 A[4*2+3] = X[instride*2+3];

 A[4*3+0] = X[instride*3+1];
 A[4*3+1] = X[instride*3+0];
 A[4*3+2] = X[instride*3+3];
 A[4*3+3] = X[instride*3+2];

 for(i=0; i<4; i++){
 for(j=0; j<4; j++){
 Y[outstride*j+i] = A[i*4+j];
 }
 }
}

Fig 6. QAM16 r=3/4 depuncture

A table lookup based method can also be used that
will combine the three blocks: demapper, deinterleaver
and depuncturer. The output soft bits from the demapper
could be directly routed to its appropriate location after
depuncturing by using a lookup table. This method would
be optimal in terms of memory access as we could avoid
the data transfers from demapper to deinterleaver and from
deinterleaver to depuncturer. Also this method is very
useful in parallelizing the blocks. One could partition the
sub-carriers across multiple threads and each thread could
independently process the sub-carriers from demapping up
to depuncturing.

In SandBlaster DSP we use 8 threads to process the
48 sub-carriers from demapper to depuncturing to keep up
real time requirements. Since every 802.11a symbol
arrives in 4uSec, a 75MHz thread processor has to
complete processing a symbol in 300 cycles. In this case,
every thread works on 6 symbols or sub-carriers and run
completely in parallel.

7. CONCLUSION

In this paper, we have described a software
implementation of 802.11a receiver blocks on SandBlaster
DSP. We have discussed critical blocks like demapper,
deinterleaver and depuncture and their software
optimizations. Instead of using traditional table lookup
based methods for interleaving, we have found special
patterns on data shuffling for these blocks. Such patterns
have been exploited to optimize the blocks. Also, table
lookup based methods have been used to merge multiple
blocks and achieve thread level parallelism.

REFERENCES

[1] John Glossner et al, “Sandblaster low power DSP”, IEEE
2004 Custom Integrated Circuits Conference, 2004, pp 575-581.

[2] Sanjay Jinturkar , John Glossner, Mayan Moudgill, Erdem
Hokenek, “Programming the Sandblaster Multithreaded
Processor”, GSPx 2003.

[3] IEEE 802.11b-1999, “Wireless LAN medium access control
(MAC) and Physical layer (PHY) Specifications: High Speed
Physical Layer Extension in the 2.4 GHz Band,” 1999.

[4] IEEE 802.11a-1999, “Wireless LAN medium access control
(MAC) and Physical layer (PHY) Specifications: High Speed
Physical Layer in the 5 GHz band,” 1999.

[5] M.J. Meeuwsen, O. Sattari, and B.M. Baas, “A full-rate
software implementation of an IEEE 802.11a compliant digital
baseband transmitter,” Proc. of IEEE Workshop on Signal
Processing Systems (SIPS 2004), pp. 124-129, Oct. 13-15, 2004.

[6] F. Tosato and P. Bisaglia, “Simplified soft-output demapper
for binary interleaved COFDM with application to
HIPERLAN/2,” in Proc. IEEE ICC 2002, vol. 2, 2002, pp. 664–
668.

k = 0;
out[0] = in[k++];
out[1] = in[k++];
out[2] = in[k++];

for(m=5; m<288; m+=6){
 for(i=0; i<4; i++){
 out[m+i] = in[k++];
 }
}

	Search by Author
	Search by Session

